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Abstract Agroforestry as a land management practice

presents a method for partially offsetting greenhouse gas

emissions from agricultural land. Of all agroforestry

practices in the United States, windbreaks in particular are

used throughout the United States providing a useful

starting point for deriving amodelling systemwhich could

quantify the amount of carbon sequestered on U.S.

agricultural land and provide for broad usability. We

present our first approximation to this end by presenting a

model that estimates current and future stocks within

multiple carbon pools of windbreak systems such as live

trees, the O horizon, downed woody debris and standing

dead trees. In this article, we describe each modelled

process driving carbon fluxes within carbon pools includ-

ing novel windbreak tree growth and mortality models.

Our model is generalized by region and species group

allowing us to run scenarios for any common tree species

in any location within the contiguous United States.

Integrated into the agricultural greenhouse gas accounting

tool, COMET-FarmTM, the windbreak component gives

landowners and landmanagers power to viewagroforestry

systems in the same context as agricultural operations and

provides an alternative to intensive biomass inventories.
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Introduction

Carbon sequestration through agroforestry has been

identified as an important climate change mitigation

method (Smith et al. 2007), however no complete

inventory of agroforestry systems exists in the United

States, and the potential role of U.S. agroforestry in

greenhouse gas mitigation has not been quantified.

Though the term ‘‘agroforestry’’ is not widely used

within U.S. agricultural industries, five major classes of

agroforestry systems are documented by the Natural

Resources Conservation Service (NRCS) and are widely

used by producers, including windbreaks, farm wood-

lots, silvopasture, riparian buffers and alley cropping.

Assistance by the NRCS has been provided to establish

agroforestry plantings on hundreds of thousands of acres

of cropland and grassland in the United States (NRCS

Air Quality Office—personal communication). There is

growing recognition of the need to address this knowl-

edge gap, evidenced by a June, 2014 workshop

organized by the North American Agroforestry Center

around this topic (Schoeneberger et al. in prep).

We developed biomass carbon accumulationmodels

for use in an inventory inU.S. agroforestry systems, and

also to be used within the agroforestry module of the

online, web-based COMET-FarmTM greenhouse gas

accounting tool (available online at: http://cometfarm.

nrel.colostate.edu) to aid decision makers in assessing

the greenhouse gas consequences of adding, renewing,

modifying, or removing agroforestry systems.

In this paper we describe a modelling framework that

incorporates a set of species- and region-specific growth

models to account for tree carbon sequestration, paired

with models to describe tree death and carbon cycling.

We focus on windbreak systems given their prevalence

throughout the U.S. (Montagnini and Nair 2004) and

their importance within U.S. Department of Agriculture

Conservation Planning (USDA 2015) as a means for

reducing soil erosion and improving crop yields. Since

using off-the-shelf forest-based models is unsuitable for

agroforestry systems (CAST 2011), our framework

blends models that were fit using actual windbreak data

and, where appropriate, forest-based models.

Model overview

Our biomass and growth modelling system, subse-

quently referred to as the windbreak carbon model

(WCM), annually tracks the carbon mass from living

and dead vegetation in windbreak systems on an

individual tree basis. WCMwas designed to maximize

utility and as such generalizes windbreaks by their

respective land resource region (LRR; NRCS 2006),

and each windbreak species by its species group. The

LRR scheme used is modified from NRCS (2006) by

splitting 5 land resource regions in 2 to reduce climate

variability within the regions, delineating 25 rather

than 20 LRRs identified by NRCS (2006) (Fig. 1;

Supplementary Table 1). Climatic variability is a

source of error in ecosystem models, and to minimize

climate contributions to model error terms we exam-

ined mean annual temperature and precipitation at the

Major Land Resource Areas (MLRA) level within the

LRR. We split LRRs into smaller land areas along

MLRA boundaries in the LRRs where mean annual

temperature varied by more than 2 �C or total

precipitation by more than 10 cm. Species groups

are a classification schema pooling individual species

into 10 species groups using taxonomic relationships

and wood specific gravity to aid in generalized

allometric models (Jenkins et al. 2003). We performed

all analyses and modeling in R (R Core Development

Team 2014) using the package ‘quantreg’ (Koenker

2015).

Carbon pools

In each annual time step, WCM computes the mass of

carbon, or stock, within each pool. Five carbon pools

are tracked: overstory live trees representing the

aboveground and belowground stock of woody peren-

nial plants with a diameter at breast height (dbh) of at

least 2.5 cm; the understory constituting above- and

belowground stock of herbaceous vegetation, shrubs,

and trees with a dbh less than 2.5 cm; standing dead

trees which represent aboveground and belowground

stock from recent mortality of trees not yet fallen over;

downed woody debris, fallen woody material with a

diameter at least 7.6 cm; and the O soil horizon,

comprising the materials above mineral soil (Fig. 2).

Pools were delineated to be compatible with both

USDA and EPA protocols for greenhouse gas
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inventories (Hoover et al. 2014; US Environmental

Protection Agency 2014).

Each pool is also broken into components and

components into sub-components where the added

specificity is required to model processes. Overstory

live trees and standing dead tree pools are divided into

coarse root, stem and tree crown components. We

further subdivide the crown component into foliage

and four diameter size classes of branchwood: less

than 0.6 cm, between 0.6 and 2.5 cm, 2.5–7.6 cm and

greater than 7.6 cm. The O horizon comprises the duff

and litter components, of which litter is further

subdivided into foliage fall and branch fall from the

three smaller branchwood diameter size classes. The
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Fig. 1 Map of land resource regions, labeled by alphabetical code, within the contiguous United States (adapted from USDA 2006)
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understory pool consists of three components: trees

less than 2.5 cm dbh, with sub-components akin to

live overstory trees, shrubs and herbaceous vegetation.

The downed woody debris pool is solely the fall of

branches or main stems over 7.6 cm in diameter.

Modeled processes

Tree growth

In WCM, the tree growth process determines how

much belowground and aboveground carbon stock

accrues over time. The growth models behind the tree

growth process were developed specifically for wind-

break trees using preexisting datasets and in such a

way as to negate detailed inputs regarding site

conditions or stand level characteristics such as tree

stocking rates; instead each growthmodel requires just

species group and LRR as inputs. We trained a range

of growth models from a forest inventory database,

tested the resulting estimates of carbon stock on a

windbreak inventory database, and selected the mod-

els best representing windbreak growth to compile a

set of growth models.

Training growth models

As comprehensive studies or inventories of windbreak

growth are lacking, we used data from the national

forest inventory of the U.S. conducted by the U.S.

Department of Agriculture, Forest Service, Forest

Inventory and Analysis (FIA) Program. FIA plots are

systematically distributed approximately every 2428

hectares across the 48 conterminous states. Each plot

which contains a forest land use is comprised of a

series of smaller plots (i.e., subplots) where tree- and

site-level attributes—such as diameter at breast height

and tree height—are measured at regular temporal

intervals (Bechtold and Patterson 2005), and this

information is populated into a database (Woodall

et al. 2011). Of the entire FIA database, we selected

those tree records that had been remeasured, c.

2,000,000 trees. The information from the revisited

plots included dbh measured at each visit, species,

state and county location.

We used quantile regression to estimate parameters

relating 5-year periodic annual increment (PAI), the

change in dbh over 5 years of growth, to dbh using

FIA data. Whereas ordinary least squares regression

describes the conditional mean response of the

dependent variable, quantile regression describes the

response of a conditional percentile of the distribution

of the dependent variable (Cade and Noon 2003).

Quantile regression can be used to fit linear functions

on any desired conditional quantiles, denoted as s,
which can range from 0 to 1. The advantage of this

method of linear regression is that we could fit

parameters to a range of responses of PAI to dbh.

After assigning species group by species and LRR by

state and county, we estimated parameters for each s
of PAI, from 0.01 to 0.99, in intervals of 0.01, for each

species group in each LRR, using the model form:

lnðPAIÞ ¼ b0 þ b1 lnðdbnÞ þ b2dbh
2 ð1Þ

where PAI is the positive change in dbh observed in

the FIA database, in D cm year-1, normalized over

5 years, and dbh (cm) is the initial measurement. Dbh

was chosen as a predictor due to its ease of measure-

ment and the model form used (Eq. 1) has been

successfully applied to a range of trees globally

(Assmann 1970; Wykoff 1990; Huber and Sterba

2009). The quadratic term in the equation is zero, or

negative and small in magnitude. In the latter case, this

term characterizes decline in growth at older tree ages

potentially associated with physiological changes at

the tree level and reductions in nutrient availability

within older stands (Ryan et al. 1997).

Testing and selection of growth models

The next step was to identify what degree of tree

growth observed from FIA best described growth in

windbreaks. We used the USDA Natural Resources

Conservation Service’s Ecological Site Inventory

(ESI) database to test each parameterization of the

growth model for each species group and LRR

combination. The ESI includes a series of observations

of windbreaks across the U.S; while FIA was designed

to capture trends over time, ESI was designed to aid in

site descriptions and provide a baseline inventory for

management decision-making. As a result, the ESI

database captured a snapshot of conditions for c. 9800

windbreak rows. As windbreak rows tend to be

relatively homogeneous, each windbreak row record

has associated tree measurements such as total tree

age, species, and dbh.
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To test the fitted parameters for each s, we

compared the dbh observed in the ESI dataset

against dbh predicted from Eq. 1. We assumed that

it took 5 years for any tree to reach 2.5 cm dbh

(e.g. Lukaszkiewicz and Kosmala 2008). We

acknowledge this is a potentially confounding issue,

as sapling growth can vary by region, species, site

index (Nigh and Everett 2007). Lacking continental-

scale data on windbreak sampling tree growth, we

proceeded with this assumption in the hopes that it

may be improved in the future. Then in an iterative

process, we solved for PAI starting from 5 years of

age, added the estimated value to dbh starting from

2.5 cm, and then solved for PAI again forming an

array of dbh on tree age. Diameter at breast height

values between each 5 years of age were linearly

interpolated. We formally examined the fit of

parameters for each s, for each species group in

each LRR, using a pair of fit statistics:

MeanBias ¼ 1

n

Xn

i¼1

Yi � Ŷi
� ��� �� ð2Þ

Mean Percent Error ¼ 1

n

Xn

i¼1

Yi � Ŷi
� �

Yi
ð3Þ

where n is the number of observations, Yi is is the

observed value and Ŷi is the actual value. For each

species group in each LRR, we desired to choose the

parameters (1) that would minimize mean bias and

mean percent error, (2) on the condition that the

quadratic term in Eq. 1 was positive rather than zero or

negative. By repeating this process over each species

group in each LRR, we were able to quantitatively

judge 99 equations describing the whole spectrum of

tree growth observed in FIA as applied to windbreaks.

The selected parameters for the best judged s were

incorporated into WCM to describe the relationship of

tree age to dbh.

We repeated this process of training on FIA

records and testing on ESI records for all species

groups pooled across LRRs as well. Where the data

limited our ability to fit models for a given species

group and LRR, the nationally pooled parameter

fitting ensured full coverage over the contiguous

U.S. Fit statistics of the selected growth models are

provided in Supplementary Table 2.

Allocating carbon stock among tree components

Aboveground and belowground tree carbon stock at

each year of growth were estimated using the

predicted dbh and the allometric equations for each

species group as reported by Jenkins et al. (2003). The

allometric equations were designed to produce

biomass estimates for trees in forests; however,

open-grown trees, such as in windbreaks, generally

have a greater proportion of biomass in the crown than

in forest-grown trees (Zhou et al. 2007). Using the

dbh-based correction factors supplied by Zhou et al.

(2014) for green ash (Fraxinus pennsylvanicaMarsh.)

and eastern redcedar (Juniperus virginiana L.), for

hardwood and softwood species respectively, we were

able to adjust relative proportion of biomass in stems

downward and crowns upward. Using these two

sources of equations, we were to divide aboveground

biomass stock into the crown, stem, and coarse root

components appropriately. Subsequently, we con-

verted biomass to carbon stock using a factor of 2:1

(IPCC 2003). We then subdivided crown carbon stock

within crown subcomponents using allometric equa-

tions from various studies mapped to each species

group ( Table 1).

Tree mortality

We determined the proportion of trees in the live

overstory that move to the standing dead pool

annually. In forest systems, mortality is typically

modeled as a function of stand density (e.g. Ryan et al.

1997; Rebain 2010); this basic tenet, known as self-

thinning, holds that stands, at full-stocking, obey a

maximum density for a given average size of the

individual tree. However, application of a density-

driven algorithm for our model is tenuous given the

unique open-grown environment of windbreaks.

Instead, we used an age-driven approach knowing

that studies of tree demography have shown a

relationship of tree age with risk of mortality (Har-

combe 1987).

Tree survival regression

To determine rates of mortality as a function of tree

age, we regressed percent survival on total age (i.e.,
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years since seedling establishment), recorded in each

windbreak row in the ESI dataset. These regressions

for survivorship were fit with a negative logarithmic

curve; mortality is greatest immediately after tree

establishment and gradually decreases over time. This

is the most typical pattern observed in tree popula-

tions, especially in even-aged systems (Goff and West

1975; Harcombe 1987). The survivorship curves were

fit on the equation:

Survivalt ¼ exp 4:60517þ b1tð Þ ð4Þ

where survivalt is percent of trees surviving at age t. In

an initial attempt, a survivorship curve was fit for each

species group, but small sample sizes and lack of

observations at older ages was limiting though the

results hinted that hardwoods generally had lower

survivorship rates than softwoods. Thus, survivorship

curves were fit on all hardwoods species and on all

softwood species separately, yielding two solutions

(Table 2). Our results predicted that a population of

hardwoods and softwoods would have a half-life,

defined as log10 0:5ð Þ=b1, at 44 and 65 years of age and

amean life, defined as-1/b2, at 63 and 94 years of age

for hardwood and softwood species, respectively.

Carbon cycling

In addition to estimating individual tree growth,WCM

also addresses carbon turnover within broader wind-

break systems. Datasets describing carbon cycling

within agroforestry systems are virtually nonexistent,

thus we largely adapted carbon dynamics models from

the Forest Vegetation Simulator (FVS) and the

associated Fire and Fuels Extension model (FVS-

FFE) (Rebain 2010). FVS is a growth-and-yield forest

model which predicts tree growth and mortality at the

stand scale; FVS-FFE tracks the decay and movement

of biomass across carbon pools given the growth and

death predicted by FVS. We broke down carbon

cycling into five processes, as follows.

Live crown breakage

Annually, all trees, regardless of species group or

LRR, shed 1 % of each crown sub-component to the

respective subcomponent of either the litter compo-

nent or downed woody debris pool. This process, as

taken from FVS-FFE, represents background fall from

physical forces such as wind or snow. Crown stock

Table 1 Mapping of species groups to species and sources of crown subcomponent proportioning

Species group Species mapping and equation source

Aspen, alder, cottonwood, willow Quaking aspen, Loomis and Roussopolous (1978)

Cedar, larcha Western red-cedar, Western larch, Brown and Johnston (1976)

Douglas-fir Douglas-fir, Brown and Johnston (1976)

Hard maple, oak, hickory, beech Northern red oak, Loomis and Blank (1981)

Juniper, oak, mesquite One-seed juniper, Grier et al. (1992)

Mixed hardwood Northern red oak, Loomis and Blank (1981)

Pine Ponderosa pine, Brown and Johnston (1976)

Soft maple, birch Northern red oak, Loomis and Blank (1981)

Spruce Engelmann spruce, Brown and Johnston (1976)

True fir, hemlocka Subalpine fir, Western hemlock, Brown and Johnston (1976)

a Species group split by genus

Table 2 Summary of windbreak tree survivorship regressions

Species class b0 b1 SEM P R2 n

Hardwood 4.6052 -0.0159 0.0004 \0.0001 0.21 7019

Softwood 4.6052 -0.0106 0.0004 \0.0001 0.20 2758

880 Agroforest Syst (2016) 90:875–887

123



was not discounted as it was assumed new growth

within each year replaces stock lost through breakage.

Live foliage fall

Aportion of the crownwas deposited from the live tree

overstory to the foliage fall subcomponent in the O

horizon annually. The stock of foliage fall added to the

litter was determined by:

Foliagefall ¼ Foliagemass

Standingspan

� �
ð5Þ

where standingspan is the portion of foliage shed

annually by a species group. Values for standing span

were generalized by species group from species-

specific values presented by FVS-FFE and are not

parameterized by LRR (Table 3). Foliage stock is not

discounted and assumed to be replaced by new growth

within each year.

Standing deadfall

For a period after mortality occurs, standing dead

stock falls at a linear rate to the litter and downed

woody debris components. The equation to determine

crown fall of standing dead trees is similar to Eq. 4,

where the stock fallen is the quotient of available

standing stock and the standing span. We generalized

standing span by LRR and by species group using

species-specific values within FVS-FFE (Supplemen-

tary Table 3). For this and other modeled processes

that are parameterized by LRR and adapted from FVS-

FFE, parameters were selected from geographic

variants of FVS-FFE that had the most overlap by

geographic area with each LRR. In addition to crown

fall, the stems of standing dead trees fall over a period

determined by their dbh at year of death. The stem fall

rate was set to 0.01 for stems over 82 cm; for stems

under 82 cm, the equation to determine the stem fall

rate, regardless of species group or LRR, was:

Stemfallrate ¼ 0:064311� 0:00066 dbh ð6Þ

Standing dead stem decay

Annually, a portion of stock in the standing dead tree

pool was lost through decay. The rate of decay,

adopted from FVS-FFE is determined by Eq. 6 and

applied to all species groups in each LRR.

Stemdecayrate ¼ 0:2

13:85þ :488 dbh
ð7Þ

Downed woody debris, litter and duff decay

We initialized O horizon carbon pools at zero as they are

relatively insignificant during windbreak establishment

(Schoeneberger 2009). Following deposition to the O

horizon, the model simulates effects of decay within the

DWD and O horizon pools. The model assumes that the

stock of each year’s additions to the forest floor pool

carbon are initially reduced by 26 % to approximate the

effects of decayonOhorizon chemical composition.This

change in carbon to biomass ratio, taken from Smith and

Heath (2002), generalized across all O horizon material

and all states of decay. Following the authors’ guidance,

we did not alter downed woody debris percent carbon.

The following exponential decay functiondetermined the

stock of each sub-component remaining at year’s end:

Stocktþ1 ¼ Stockt � 1� rð Þt ð8Þ

where t is year, and r is a decay rate. Decay rates were

adapted from FVS-FFE. Decay for branch fall were LRR

specific (Supplementary Table 4), and foliage fall and

duff decay rates were set at 0.65 and 0.002 respectively

for all LRRs. Of the stock lost through decay, 2 % was

added to the duff subcomponent, as in FVS-FFE.

Understory growth

The understory pool consists of sapling trees, shrubs

and herbaceous vegetation. Unlike other processes in

Table 3 Standing span of foliage generalized to species group

Species group Standing span (years)

All hardwoods 1

Cedar, larch (Cupressaceae)a 5

Cedar, larch (Larix)a 1

Douglas-fir 5

Juniper, oak, mesquite (Juniperus)a 4

Pine 4

Spruce 6

True fir, hemlock (Abies)a 7

True fir, hemlock (Tsuga)a 4

a Species groups split by genus
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WCM, the growth of the two latter components are not

modeled dynamically. Instead, we followed sugges-

tions from Hoover et al. (2014) and adapted lookup

values for aboveground shrub and herbaceous vege-

tation carbon stock from FVS-FFE. These values,

multiplied by 1.11 to account for belowground carbon

stock (Hoover et al. 2014), represent maximal carbon

stock. As windbreaks are typically planted in areas

that may have been cultivated or otherwise cleared

(Schoeneberger 2009), we assume shrub and herba-

ceous vegetation are initially zero and accrue mass

linearly for 2 and 20 years, respectively, to reach

maximal carbon stock. The tables used for these two

understory components are provided in Supplemen-

tary Tables 5 and 6.

Model evaluation

Implementation

The WCM is fully usable by the general public

through use of the agroforestry module of COMET-

FarmTM. Through the user interface, users can select

the location of an agroforestry practice, and enter in

their tree population by species, number of trees by

dbh class and species. The agroforestry module runs

the WCM and reports the aggregate carbon stock in

each pool for the current year and for the next 50 years

in 10-year intervals, limited to reporting up to

100 years of age. Analogous to the region and forest

type specific look-up tables for estimating forest

carbon stocks in the U.S. (Smith et al. 2006), WCM

provides to landowners and land managers a ‘‘ball-

park’’ estimate to serve as an alternative where

resource-intensive methods to characterize carbon

stocks and changes are prohibitive.1

To demonstrate the application of our model, we

have selected a hypothetical windbreak consisting of

100 hemlock (Tsuga) trees in the eastern Pacific

Northwest (LRR B). In this scenario, living tree

carbon stock rises over time, eventually sequestering

over 150 Mg of carbon in 100 years with the stem

comprising about half of the total living tree carbon

stock (Fig. 3a, b). Concurrent with the increase in

overstory live tree stock, the standing dead stock rises;

the dead standing stems, having longer standing spans

than the crown components, comprise about 60 % of

that pool’s carbon stock (Fig. 3c, d). In this example,

the other pools together sum together to 5 % of the live

tree overstory by the hundredth year of growth

(Fig. 3e). Initially, the understory comprises a major-

ity of the other pools and is overtaken by the O horizon

by the 25th year. Fifty years later, the downed woody

debris pool contains a significant portion of the other

pools’ stock as standing dead stock begins to fall and

accumulate (Fig. 3f). In total, the model predicts an

average rate of sequestration of 1.5 Mg C year-1 for

this scenario (Fig. 3g) with about 85 % of total carbon

stock in the live tree overstory (Fig. 3h).

Validation

To ensure that our model provides sensible and

reliable results, we tested the two processes developed

specifically for WCM as well as the adjustment of

crown sub-components for open-grown trees. In

validating the growth equation, we used a dataset of

18 ponderosa pine (Pinus ponderosa Douglas ex.

Lawson) windbreak trees in Montana and Nebraska

(Ballesteros 2015). The author measured dbh and age

of each tree and destructively sampled and weighed

each tree. The trees ranged in dbh from 15 to 41 cm,

from 15 to 54 years of age, and from 19 to 464 kg of

carbon, assuming 50 % carbon by mass (IPCC 2003).

In WCM, the respective species group is pine and the

LRR is G. Based on the observed tree ages, we found

our model over predicted dbh, especially at older ages,

averaging a bias of 8.5 cm dbh (Fig. 4a). Not surpris-

ingly, this led to a significant overestimation of carbon

stock of 128 kg on average. Holding dbh constant in

order to evaluate our carbon stock by dbh relationship,

we found much greater agreement, with only a slight

underestimation bias of 10 kg of carbon stock

(Fig. 4b). Taken together our evaluation suggests that

the largest source of error is our growth equation. As

small as the validation set was, new sources of data

should be incorporated into future refinements of our

model.

Given that the relationship between age and

survival percentage was weak (Table 2), we found it

1 Supplementing the interactive agroforestry module, estimated

carbon stocks for each LRR and species group from establish-

ment through 100 years of growth as well as the selected growth

equations are available to view within the Help page on the

COMET-FarmTM website, accessible at: http://cometfarm.nrel.

colostate.edu.
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necessary to evaluate our survival curve regressions.

Unfortunately, data on windbreak tree survival over

a wide range of ages are sparse and we instead

compared our survival curves to studies of tree

survival in forests and urban settings. In the Great

Lakes region, (Hett and Loucks 1976) identified

greater mortality rates in forest plots than in

windbreaks for both eastern hemlock [Tsuga

canadensis (L.) Carr.] and balsam fir [Abies bal-

samea (L.) Mill] forests, while Roman and Scatena

(2011) also found greater mortality rates in street

tree plantings of field maple (Acer campestre L.)

(Fig. 5). Our survivorship curves may be slightly

higher because observations of mortality at older

tree ages were few; 75 % of the surveyed windbreak

rows in the ESI dataset were less than 25 years old.

Fig. 3 Overstory, standing dead and other pools, and aggre-

gated across carbon pools by totaled stock (left hand a, c, e, g,
respectively) and by proportion (right side b, d, f, h,

respectively) estimated for 100 hemlock trees within the true

fir, hemlock species group in land resource region B. Legends

correspond to each figure in its row
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Assumptions and limitations

In order to distill dynamics occurring in windbreak

systems into a model with few inputs, we accounted

only for tree size, measured by dbh, to determine tree

growth, as measured by PAI. Alternatively, we could

have used site-level information recorded in ESI and

FIA such as stand density, slope, aspect, latitude, and

elevation to help explain tree growth, as has been

demonstrated by Wykoff (1990) and Uzoh and Oliver

(2006), however some or all of these data are

impractical to either surmise or ask a landowner to

characterize and enter in online carbon modeling tools

like COMET-FarmTM. Regarding tree survivorship,

we used a simplified model to explain cumulative

survivorship as a function of tree age. In fact, only a

small portion of variability in survival was explained

for both hardwoods and softwoods. Harcombe (1987)

suggested tree size may be a better predictor of

mortality, but on inspection we found equally poor

predictive power by dbh alone or dbh and age together

(results not shown). It is probable that the variability

seen in the ESI dataset was driven by unaccounted

interactions between site-specific factors such as

microclimates, soil characteristics and management

activities such as irrigation or fertilization. Under-

standing the tradeoff between ease of use and accu-

racy, we settled for accepting greater uncertainty in

exchange for greater simplicity.

It is important to note we did not explicitly account

for inter-tree competition in our growth model. To

informally test this assumption, we explored dbh to

age relationships across tree sizes and tree spacing

densities using the ESI dataset and found no signal to

suggest density was a primary influence on cumulative

growth (results not shown). In windbreak systems, the

linear spatial arrangement results in forest edge-like

Fig. 4 Predicted dbh as a function of age plotted against

observed dbh (a) and predicted above-ground carbon stock

plotted against measured carbon stock (b); predictions from the

windbreak carbon model and measurements from Ballesteros

(2015)

Fig. 5 Survivorship curves generated for the windbreak carbon

model (WCM) displayed among that of urban street trees

(Roman and Scatena 2011), eastern hemlock forest trees (Hett

and Loucks 1976)[1] and balsam fir forest trees (Hett and

Loucks)[2]
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growing conditions and as a result, competitive factors

such as shading and resource competition may be

weaker than in forested environments (Schoeneberger

2009; Zhou et al. 2014), We interpret this to suggest it

may be appropriate to extend our windbreak model to

other agroforestry practices where inter-tree competi-

tion is likely to be low and to extending our model to

agroforestry practices with high tree densities where

inter-tree competition may influence growth rates.

Another potentially important factor in this model

is the assumed time to reach a dbh of 2.5 cm. Biomass

accumulation increases rapidly until canopy closure,

hence the predicted biomass accumulation rate in the

first two decades after establishment is sensitive to our

assumed time. This effect becomes less significant as

the windbreak system matures. We intend to improve

the model as regionally and species-specific data on

open-grown seedling growth become available.

Finally, in development of our growth process

model, although the FIA dataset was comprehensive

and provided a sufficient sample size to train growth

equations on each species group and LRR, the ESI

dataset was limited to only 13 of the 25 LRRs. To

address the gap, we use our national, LRR non-specific

growth equations. We acknowledge that accuracy will

be improved by accounting for regional variation, and

we are examining ways to expand on the ESI dataset to

take into account variations in the LRRs not repre-

sented in the original dataset.

Conclusion

We have assembled a generalized model to describe

the carbon dynamics occurring within windbreak

systems. We presented our methods to estimate tree

growth and survival, directly addressing concerns that

forest-based models may not accurately capture the

distinct growing conditions in open-grown, agro-

forestry systems. By driving the model at the LRR

and species group level, we reflect the coarse-scale

factors that influence growth and carbon dynamics.

The use of LRRs provides wall-to-wall coverage of the

contiguous U.S. and, with the use of species groups,

the carbon dynamics in virtually every common

species can be predicted. This incentivizes adoption

of a nationally consistent approach for both measure-

ment and reporting. We refrained from including fine-

scale factors that are burdensome and difficult for the

layperson using COMET-FarmTM to collect and may

only marginally improve performance due to inher-

ently high within-site and across-site variability in

woody ecosystems (Jenkins et al. 2003).

As noted by Schoeneberger (2009) and Hoover

et al. (2014), carbon accounting in agroforestry

systems should also consider soil organic matter and

harvested wood products. Future modeling efforts,

including ours, could leverage existing models or

datasets to account for the aforementioned issues.

Further revisions to WCM will allow COMET-

FarmTM users to select discrete disturbance or man-

agement events and estimate how a particular event

would affect the immediate and legacy effects on

carbon pools. In addition, relevant research will be

incorporated as it becomes available. We know the

potential exists. For example, Lister et al. (2012) have

demonstrated the feasibility of adapting FIA to

inventory trees outside of forests. Efforts such as

these would greatly improve growth and carbon

estimation methods for all agroforestry systems and

aid in validation.
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